DocumentationClassesMultiOutputClassifier

Class: MultiOutputClassifier

Multi target classification.

This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification.

Python Reference

Constructors

new MultiOutputClassifier()

new MultiOutputClassifier(opts?): MultiOutputClassifier

Parameters

ParameterTypeDescription
opts?object-
opts.estimator?anyAn estimator object implementing fit and predict. A predict_proba method will be exposed only if estimator implements it.
opts.n_jobs?numberThe number of jobs to run in parallel. fit, predict and partial_fit (if supported by the passed estimator) will be parallelized for each target. When individual estimators are fast to train or predict, using n_jobs > 1 can result in slower performance due to the parallelism overhead. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all available processes / threads. See Glossary for more details.

Returns MultiOutputClassifier

Defined in generated/multioutput/MultiOutputClassifier.ts:23

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/multioutput/MultiOutputClassifier.ts:21
_isInitializedbooleanfalsegenerated/multioutput/MultiOutputClassifier.ts:20
_pyPythonBridgeundefinedgenerated/multioutput/MultiOutputClassifier.ts:19
idstringundefinedgenerated/multioutput/MultiOutputClassifier.ts:16
optsanyundefinedgenerated/multioutput/MultiOutputClassifier.ts:17

Accessors

classes_

Get Signature

get classes_(): Promise<ArrayLike>

Class labels.

Returns Promise<ArrayLike>

Defined in generated/multioutput/MultiOutputClassifier.ts:456


estimators_

Get Signature

get estimators_(): Promise<any>

Estimators used for predictions.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:483


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.

Returns Promise<ArrayLike>

Defined in generated/multioutput/MultiOutputClassifier.ts:537


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.

Returns Promise<number>

Defined in generated/multioutput/MultiOutputClassifier.ts:510


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/multioutput/MultiOutputClassifier.ts:42

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/multioutput/MultiOutputClassifier.ts:98


fit()

fit(opts): Promise<any>

Fit the model to data matrix X and targets Y.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyParameters passed to the estimator.fit method of each step.
opts.sample_weight?ArrayLikeSample weights. If undefined, then samples are equally weighted. Only supported if the underlying classifier supports sample weights.
opts.X?ArrayLikeThe input data.
opts.Y?ArrayLike[]The target values.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:115


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRouter encapsulating routing information.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:166


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/multioutput/MultiOutputClassifier.ts:55


partial_fit()

partial_fit(opts): Promise<any>

Incrementally fit a separate model for each class output.

Parameters

ParameterTypeDescription
optsobject-
opts.classes?any[]Each array is unique classes for one output in str/int. Can be obtained via \[np.unique(y\[:, i\]) for i in range(y.shape\[1\])\], where y is the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels in classes.
opts.partial_fit_params?anyParameters passed to the estimator.partial_fit method of each sub-estimator. Only available if enable_metadata_routing=True. See the User Guide.
opts.sample_weight?ArrayLikeSample weights. If undefined, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
opts.X?ArrayLikeThe input data.
opts.y?ArrayLikeMulti-output targets.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:202


predict()

predict(opts): Promise<ArrayLike>

Predict multi-output variable using model for each target variable.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe input data.

Returns Promise<ArrayLike>

Defined in generated/multioutput/MultiOutputClassifier.ts:260


predict_proba()

predict_proba(opts): Promise<any>

Return prediction probabilities for each class of each output.

This method will raise a ValueError if any of the estimators do not have predict_proba.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The input data.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:296


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLike[]True values for X.

Returns Promise<number>

Defined in generated/multioutput/MultiOutputClassifier.ts:332


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:375


set_partial_fit_request()

set_partial_fit_request(opts): Promise<any>

Request metadata passed to the partial_fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.classes?string | booleanMetadata routing for classes parameter in partial_fit.
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in partial_fit.

Returns Promise<any>

Defined in generated/multioutput/MultiOutputClassifier.ts:415