DocumentationClassesMultiTaskLasso

Class: MultiTaskLasso

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

The optimization objective for Lasso is:

Python Reference

Constructors

new MultiTaskLasso()

new MultiTaskLasso(opts?): MultiTaskLasso

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberConstant that multiplies the L1/L2 term. Defaults to 1.0.
opts.copy_X?booleanIf true, X will be copied; else, it may be overwritten.
opts.fit_intercept?booleanWhether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).
opts.max_iter?numberThe maximum number of iterations.
opts.random_state?numberThe seed of the pseudo random number generator that selects a random feature to update. Used when selection == ‘random’. Pass an int for reproducible output across multiple function calls. See Glossary.
opts.selection?"random" | "cyclic"If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4.
opts.tol?numberThe tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.
opts.warm_start?booleanWhen set to true, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.

Returns MultiTaskLasso

Defined in generated/linear_model/MultiTaskLasso.ts:23

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/MultiTaskLasso.ts:21
_isInitializedbooleanfalsegenerated/linear_model/MultiTaskLasso.ts:20
_pyPythonBridgeundefinedgenerated/linear_model/MultiTaskLasso.ts:19
idstringundefinedgenerated/linear_model/MultiTaskLasso.ts:16
optsanyundefinedgenerated/linear_model/MultiTaskLasso.ts:17

Accessors

coef_

Get Signature

get coef_(): Promise<ArrayLike[]>

Parameter vector (W in the cost function formula). Note that coef_ stores the transpose of W, W.T.

Returns Promise<ArrayLike[]>

Defined in generated/linear_model/MultiTaskLasso.ts:505


dual_gap_

Get Signature

get dual_gap_(): Promise<ArrayLike>

The dual gaps at the end of the optimization for each alpha.

Returns Promise<ArrayLike>

Defined in generated/linear_model/MultiTaskLasso.ts:578


eps_

Get Signature

get eps_(): Promise<number>

The tolerance scaled scaled by the variance of the target y.

Returns Promise<number>

Defined in generated/linear_model/MultiTaskLasso.ts:603


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/MultiTaskLasso.ts:651


intercept_

Get Signature

get intercept_(): Promise<ArrayLike>

Independent term in decision function.

Returns Promise<ArrayLike>

Defined in generated/linear_model/MultiTaskLasso.ts:528


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/MultiTaskLasso.ts:626


n_iter_

Get Signature

get n_iter_(): Promise<number>

Number of iterations run by the coordinate descent solver to reach the specified tolerance.

Returns Promise<number>

Defined in generated/linear_model/MultiTaskLasso.ts:553


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/MultiTaskLasso.ts:82

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/MultiTaskLasso.ts:134


fit()

fit(opts): Promise<any>

Fit MultiTaskElasticNet model with coordinate descent.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Data.
opts.y?ArrayLike[]Target. Will be cast to X’s dtype if necessary.

Returns Promise<any>

Defined in generated/linear_model/MultiTaskLasso.ts:151


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/MultiTaskLasso.ts:190


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/MultiTaskLasso.ts:95


path()

path(opts): Promise<ArrayLike>

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

Parameters

ParameterTypeDescription
optsobject-
opts.alphas?ArrayLikeList of alphas where to compute the models. If undefined alphas are set automatically.
opts.check_input?booleanIf set to false, the input validation checks are skipped (including the Gram matrix when provided). It is assumed that they are handled by the caller.
opts.coef_init?ArrayLikeThe initial values of the coefficients.
opts.copy_X?booleanIf true, X will be copied; else, it may be overwritten.
opts.eps?numberLength of the path. eps=1e-3 means that alpha_min / alpha_max \= 1e-3.
opts.l1_ratio?numberNumber between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.
opts.n_alphas?numberNumber of alphas along the regularization path.
opts.params?anyKeyword arguments passed to the coordinate descent solver.
opts.positive?booleanIf set to true, forces coefficients to be positive. (Only allowed when y.ndim \== 1).
opts.precompute?boolean | ArrayLike[] | "auto"Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.
opts.return_n_iter?booleanWhether to return the number of iterations or not.
opts.verbose?number | booleanAmount of verbosity.
opts.X?ArrayLikeTraining data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output then X can be sparse.
opts.Xy?ArrayLikeXy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
opts.y?anyTarget values.

Returns Promise<ArrayLike>

Defined in generated/linear_model/MultiTaskLasso.ts:228


predict()

predict(opts): Promise<any>

Predict using the linear model.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anySamples.

Returns Promise<any>

Defined in generated/linear_model/MultiTaskLasso.ts:348


score()

score(opts): Promise<number>

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
opts.y?ArrayLikeTrue values for X.

Returns Promise<number>

Defined in generated/linear_model/MultiTaskLasso.ts:382


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.check_input?string | booleanMetadata routing for check_input parameter in fit.
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/linear_model/MultiTaskLasso.ts:428


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/MultiTaskLasso.ts:471