Class: PLSCanonical
Partial Least Squares transformer and regressor.
For a comparison between other cross decomposition algorithms, see Compare cross decomposition methods.
Read more in the User Guide.
Constructors
new PLSCanonical()
new PLSCanonical(
opts
?):PLSCanonical
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.algorithm ? | "nipals" | "svd" | The algorithm used to estimate the first singular vectors of the cross-covariance matrix. ‘nipals’ uses the power method while ‘svd’ will compute the whole SVD. |
opts.copy ? | boolean | Whether to copy X and Y in fit before applying centering, and potentially scaling. If false , these operations will be done inplace, modifying both arrays. |
opts.max_iter ? | number | The maximum number of iterations of the power method when algorithm='nipals' . Ignored otherwise. |
opts.n_components ? | number | Number of components to keep. Should be in \[1, min(n_samples, n_features, n_targets)\] . |
opts.scale ? | boolean | Whether to scale X and Y . |
opts.tol ? | number | The tolerance used as convergence criteria in the power method: the algorithm stops whenever the squared norm of u_i \- u_{i-1} is less than tol , where u corresponds to the left singular vector. |
Returns PLSCanonical
Defined in generated/cross_decomposition/PLSCanonical.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/cross_decomposition/PLSCanonical.ts:23 |
_isInitialized | boolean | false | generated/cross_decomposition/PLSCanonical.ts:22 |
_py | PythonBridge | undefined | generated/cross_decomposition/PLSCanonical.ts:21 |
id | string | undefined | generated/cross_decomposition/PLSCanonical.ts:18 |
opts | any | undefined | generated/cross_decomposition/PLSCanonical.ts:19 |
Accessors
coef_
Get Signature
get coef_():
Promise
<ArrayLike
[]>
The coefficients of the linear model such that Y
is approximated as Y \= X @ coef_.T + intercept_
.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:766
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/cross_decomposition/PLSCanonical.ts:862
intercept_
Get Signature
get intercept_():
Promise
<ArrayLike
>
The intercepts of the linear model such that Y
is approximated as Y \= X @ coef_.T + intercept_
.
Returns Promise
<ArrayLike
>
Defined in generated/cross_decomposition/PLSCanonical.ts:789
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/cross_decomposition/PLSCanonical.ts:837
n_iter_
Get Signature
get n_iter_():
Promise
<any
[]>
Number of iterations of the power method, for each component. Empty if algorithm='svd'
.
Returns Promise
<any
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:814
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/cross_decomposition/PLSCanonical.ts:72
x_loadings_
Get Signature
get x_loadings_():
Promise
<ArrayLike
[]>
The loadings of X
.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:666
x_rotations_
Get Signature
get x_rotations_():
Promise
<ArrayLike
[]>
The projection matrix used to transform X
.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:716
x_weights_
Get Signature
get x_weights_():
Promise
<ArrayLike
[]>
The left singular vectors of the cross-covariance matrices of each iteration.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:616
y_loadings_
Get Signature
get y_loadings_():
Promise
<ArrayLike
[]>
The loadings of Y
.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:691
y_rotations_
Get Signature
get y_rotations_():
Promise
<ArrayLike
[]>
The projection matrix used to transform Y
.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:741
y_weights_
Get Signature
get y_weights_():
Promise
<ArrayLike
[]>
The right singular vectors of the cross-covariance matrices of each iteration.
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:641
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/cross_decomposition/PLSCanonical.ts:124
fit()
fit(
opts
):Promise
<any
>
Fit model to data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | Training vectors, where n_samples is the number of samples and n_features is the number of predictors. |
opts.y ? | ArrayLike | Target vectors, where n_samples is the number of samples and n_targets is the number of response variables. |
opts.Y ? | ArrayLike | Target vectors, where n_samples is the number of samples and n_targets is the number of response variables. |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:141
fit_transform()
fit_transform(
opts
):Promise
<ArrayLike
[]>
Learn and apply the dimension reduction on the train data.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | Training vectors, where n_samples is the number of samples and n_features is the number of predictors. |
opts.y ? | ArrayLike [] | Target vectors, where n_samples is the number of samples and n_targets is the number of response variables. |
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:183
get_feature_names_out()
get_feature_names_out(
opts
):Promise
<any
>
Get output feature names for transformation.
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: \["class_name0", "class_name1", "class_name2"\]
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.input_features ? | any | Only used to validate feature names with the names seen in fit . |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:222
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:258
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/cross_decomposition/PLSCanonical.ts:85
inverse_transform()
inverse_transform(
opts
):Promise
<ArrayLike
[]>
Transform data back to its original space.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.X ? | ArrayLike [] | New data, where n_samples is the number of samples and n_components is the number of pls components. |
opts.y ? | ArrayLike | New target, where n_samples is the number of samples and n_components is the number of pls components. |
opts.Y ? | ArrayLike [] | New target, where n_samples is the number of samples and n_components is the number of pls components. |
Returns Promise
<ArrayLike
[]>
Defined in generated/cross_decomposition/PLSCanonical.ts:292
predict()
predict(
opts
):Promise
<ArrayLike
>
Predict targets of given samples.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.copy ? | boolean | Whether to copy X and Y , or perform in-place normalization. |
opts.X ? | ArrayLike [] | Samples. |
Returns Promise
<ArrayLike
>
Defined in generated/cross_decomposition/PLSCanonical.ts:336
score()
score(
opts
):Promise
<number
>
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum()
and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y
, disregarding the input features, would get a \(R^2\) score of 0.0.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | ArrayLike | Sample weights. |
opts.X ? | ArrayLike [] | Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted) , where n_samples_fitted is the number of samples used in the fitting for the estimator. |
opts.y ? | ArrayLike | True values for X . |
Returns Promise
<number
>
Defined in generated/cross_decomposition/PLSCanonical.ts:377
set_output()
set_output(
opts
):Promise
<any
>
Set output container.
See Introducing the set_output API for an example on how to use the API.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.transform ? | "default" | "pandas" | "polars" | Configure output of transform and fit_transform . |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:421
set_predict_request()
set_predict_request(
opts
):Promise
<any
>
Request metadata passed to the predict
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.copy ? | string | boolean | Metadata routing for copy parameter in predict . |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:457
set_score_request()
set_score_request(
opts
):Promise
<any
>
Request metadata passed to the score
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in score . |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:495
set_transform_request()
set_transform_request(
opts
):Promise
<any
>
Request metadata passed to the transform
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.copy ? | string | boolean | Metadata routing for copy parameter in transform . |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:533
transform()
transform(
opts
):Promise
<any
>
Apply the dimension reduction.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.copy ? | boolean | Whether to copy X and Y , or perform in-place normalization. |
opts.X ? | ArrayLike [] | Samples to transform. |
opts.y ? | ArrayLike [] | Target vectors. |
opts.Y ? | ArrayLike [] | Target vectors. |
Returns Promise
<any
>
Defined in generated/cross_decomposition/PLSCanonical.ts:567