Class: RANSACRegressor
RANSAC (RANdom SAmple Consensus) algorithm.
RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set.
Read more in the User Guide.
Constructors
new RANSACRegressor()
new RANSACRegressor(
opts
?):RANSACRegressor
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.estimator ? | any | Base estimator object which implements the following methods: |
opts.is_data_valid ? | any | This function is called with the randomly selected data before the model is fitted to it: is_data_valid(X, y) . If its return value is false the current randomly chosen sub-sample is skipped. |
opts.is_model_valid ? | any | This function is called with the estimated model and the randomly selected data: is_model_valid(model, X, y) . If its return value is false the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with is_data_valid . is_model_valid should therefore only be used if the estimated model is needed for making the rejection decision. |
opts.loss ? | string | String inputs, ‘absolute_error’ and ‘squared_error’ are supported which find the absolute error and squared error per sample respectively. If loss is a callable, then it should be a function that takes two arrays as inputs, the true and predicted value and returns a 1-D array with the i-th value of the array corresponding to the loss on X\[i\] . If the loss on a sample is greater than the residual_threshold , then this sample is classified as an outlier. |
opts.max_skips ? | number | Maximum number of iterations that can be skipped due to finding zero inliers or invalid data defined by is_data_valid or invalid models defined by is_model_valid . |
opts.max_trials ? | number | Maximum number of iterations for random sample selection. |
opts.min_samples ? | number | Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for min_samples >= 1 , treated as a relative number ceil(min_samples \* X.shape\[0\]) for min_samples < 1 . This is typically chosen as the minimal number of samples necessary to estimate the given estimator . By default a LinearRegression estimator is assumed and min_samples is chosen as X.shape\[1\] + 1 . This parameter is highly dependent upon the model, so if a estimator other than LinearRegression is used, the user must provide a value. |
opts.random_state ? | number | The generator used to initialize the centers. Pass an int for reproducible output across multiple function calls. See Glossary. |
opts.residual_threshold ? | number | Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values y . Points whose residuals are strictly equal to the threshold are considered as inliers. |
opts.stop_n_inliers ? | number | Stop iteration if at least this number of inliers are found. |
opts.stop_probability ? | number | RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations): |
opts.stop_score ? | number | Stop iteration if score is greater equal than this threshold. |
Returns RANSACRegressor
Defined in generated/linear_model/RANSACRegressor.ts:25
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/linear_model/RANSACRegressor.ts:23 |
_isInitialized | boolean | false | generated/linear_model/RANSACRegressor.ts:22 |
_py | PythonBridge | undefined | generated/linear_model/RANSACRegressor.ts:21 |
id | string | undefined | generated/linear_model/RANSACRegressor.ts:18 |
opts | any | undefined | generated/linear_model/RANSACRegressor.ts:19 |
Accessors
estimator_
Get Signature
get estimator_():
Promise
<any
>
Best fitted model (copy of the estimator
object).
Returns Promise
<any
>
Defined in generated/linear_model/RANSACRegressor.ts:373
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/linear_model/RANSACRegressor.ts:548
inlier_mask_
Get Signature
get inlier_mask_():
Promise
<any
>
Boolean mask of inliers classified as true
.
Returns Promise
<any
>
Defined in generated/linear_model/RANSACRegressor.ts:423
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/linear_model/RANSACRegressor.ts:523
n_skips_invalid_data_
Get Signature
get n_skips_invalid_data_():
Promise
<number
>
Number of iterations skipped due to invalid data defined by is_data_valid
.
Returns Promise
<number
>
Defined in generated/linear_model/RANSACRegressor.ts:473
n_skips_invalid_model_
Get Signature
get n_skips_invalid_model_():
Promise
<number
>
Number of iterations skipped due to an invalid model defined by is_model_valid
.
Returns Promise
<number
>
Defined in generated/linear_model/RANSACRegressor.ts:498
n_skips_no_inliers_
Get Signature
get n_skips_no_inliers_():
Promise
<number
>
Number of iterations skipped due to finding zero inliers.
Returns Promise
<number
>
Defined in generated/linear_model/RANSACRegressor.ts:448
n_trials_
Get Signature
get n_trials_():
Promise
<number
>
Number of random selection trials until one of the stop criteria is met. It is always <= max_trials
.
Returns Promise
<number
>
Defined in generated/linear_model/RANSACRegressor.ts:398
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/linear_model/RANSACRegressor.ts:100
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/linear_model/RANSACRegressor.ts:152
fit()
fit(
opts
):Promise
<any
>
Fit estimator using RANSAC algorithm.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.fit_params ? | any | Parameters routed to the fit method of the sub-estimator via the metadata routing API. |
opts.sample_weight ? | ArrayLike | Individual weights for each sample raises error if sample_weight is passed and estimator fit method does not support it. |
opts.X ? | ArrayLike | Training data. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<any
>
Defined in generated/linear_model/RANSACRegressor.ts:169
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRouter encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/linear_model/RANSACRegressor.ts:218
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/linear_model/RANSACRegressor.ts:113
predict()
predict(
opts
):Promise
<any
>
Predict using the estimated model.
This is a wrapper for estimator_.predict(X)
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.params ? | any | Parameters routed to the predict method of the sub-estimator via the metadata routing API. |
opts.X ? | any [] | Input data. |
Returns Promise
<any
>
Defined in generated/linear_model/RANSACRegressor.ts:254
score()
score(
opts
):Promise
<number
>
Return the score of the prediction.
This is a wrapper for estimator_.score(X, y)
.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.params ? | any | Parameters routed to the score method of the sub-estimator via the metadata routing API. |
opts.X ? | any [] | Training data. |
opts.y ? | ArrayLike | Target values. |
Returns Promise
<number
>
Defined in generated/linear_model/RANSACRegressor.ts:293
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.sample_weight ? | string | boolean | Metadata routing for sample_weight parameter in fit . |
Returns Promise
<any
>