MaxAbsScaler
Scale each feature by its maximum absolute value.
This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.
This scaler can also be applied to sparse CSR or CSC matrices.
MaxAbsScaler
doesn’t reduce the effect of outliers; it only linearily scales them down. For an example visualization, refer to Compare MaxAbsScaler with other scalers.
Python Reference (opens in a new tab)
Constructors
constructor()
Signature
new MaxAbsScaler(opts?: object): MaxAbsScaler;
Parameters
Name | Type | Description |
---|---|---|
opts? | object | - |
opts.copy? | boolean | Set to false to perform inplace scaling and avoid a copy (if the input is already a numpy array). Default Value true |
Returns
Defined in: generated/preprocessing/MaxAbsScaler.ts:27 (opens in a new tab)
Methods
dispose()
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Signature
dispose(): Promise<void>;
Returns
Promise
<void
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:92 (opens in a new tab)
fit()
Compute the maximum absolute value to be used for later scaling.
Signature
fit(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. |
opts.y? | any | Ignored. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:109 (opens in a new tab)
fit_transform()
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit\_params
and returns a transformed version of X
.
Signature
fit_transform(opts: object): Promise<any[]>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Input samples. |
opts.fit_params? | any | Additional fit parameters. |
opts.y? | ArrayLike | Target values (undefined for unsupervised transformations). |
Returns
Promise
<any
[]>
Defined in: generated/preprocessing/MaxAbsScaler.ts:149 (opens in a new tab)
get_feature_names_out()
Get output feature names for transformation.
Signature
get_feature_names_out(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.input_features? | any | Input features. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:196 (opens in a new tab)
get_metadata_routing()
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Signature
get_metadata_routing(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.routing? | any | A MetadataRequest encapsulating routing information. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:234 (opens in a new tab)
init()
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Signature
init(py: PythonBridge): Promise<void>;
Parameters
Name | Type |
---|---|
py | PythonBridge |
Returns
Promise
<void
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:52 (opens in a new tab)
inverse_transform()
Scale back the data to the original representation.
Signature
inverse_transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The data that should be transformed back. |
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:269 (opens in a new tab)
partial_fit()
Online computation of max absolute value of X for later scaling.
All of X is processed as a single batch. This is intended for cases when fit
is not feasible due to very large number of n\_samples
or because X is read from a continuous stream.
Signature
partial_fit(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The data used to compute the mean and standard deviation used for later scaling along the features axis. |
opts.y? | any | Ignored. |
Returns
Promise
<any
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:306 (opens in a new tab)
set_output()
Set output container.
See Introducing the set_output API for an example on how to use the API.
Signature
set_output(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.transform? | "default" | "pandas" | Configure output of transform and fit\_transform . |
Returns
Promise
<any
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:346 (opens in a new tab)
transform()
Scale the data.
Signature
transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike | The data that should be scaled. |
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:379 (opens in a new tab)
Properties
_isDisposed
boolean
=false
Defined in: generated/preprocessing/MaxAbsScaler.ts:25 (opens in a new tab)
_isInitialized
boolean
=false
Defined in: generated/preprocessing/MaxAbsScaler.ts:24 (opens in a new tab)
_py
PythonBridge
Defined in: generated/preprocessing/MaxAbsScaler.ts:23 (opens in a new tab)
id
string
Defined in: generated/preprocessing/MaxAbsScaler.ts:20 (opens in a new tab)
opts
any
Defined in: generated/preprocessing/MaxAbsScaler.ts:21 (opens in a new tab)
Accessors
feature_names_in_
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Signature
feature_names_in_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:483 (opens in a new tab)
max_abs_
Per feature maximum absolute value.
Signature
max_abs_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:435 (opens in a new tab)
n_features_in_
Number of features seen during fit.
Signature
n_features_in_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:458 (opens in a new tab)
n_samples_seen_
The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across partial\_fit
calls.
Signature
n_samples_seen_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:508 (opens in a new tab)
py
Signature
py(): PythonBridge;
Returns
PythonBridge
Defined in: generated/preprocessing/MaxAbsScaler.ts:39 (opens in a new tab)
Signature
py(pythonBridge: PythonBridge): void;
Parameters
Name | Type |
---|---|
pythonBridge | PythonBridge |
Returns
void
Defined in: generated/preprocessing/MaxAbsScaler.ts:43 (opens in a new tab)
scale_
Per feature relative scaling of the data.
Signature
scale_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/preprocessing/MaxAbsScaler.ts:412 (opens in a new tab)