Class: RFE

Feature ranking with recursive feature elimination.

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and the importance of each feature is obtained either through any specific attribute or callable. Then, the least important features are pruned from current set of features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached.

Read more in the User Guide.

Python Reference

Constructors

new RFE()

new RFE(opts?): RFE

Parameters

ParameterTypeDescription
opts?object-
opts.estimator?anyA supervised learning estimator with a fit method that provides information about feature importance (e.g. coef_, feature_importances_).
opts.importance_getter?stringIf ‘auto’, uses the feature importance either through a coef_ or feature_importances_ attributes of estimator. Also accepts a string that specifies an attribute name/path for extracting feature importance (implemented with attrgetter). For example, give regressor_.coef_ in case of TransformedTargetRegressor or named_steps.clf.feature_importances_ in case of class:~sklearn.pipeline.Pipeline with its last step named clf. If callable, overrides the default feature importance getter. The callable is passed with the fitted estimator and it should return importance for each feature.
opts.n_features_to_select?numberThe number of features to select. If undefined, half of the features are selected. If integer, the parameter is the absolute number of features to select. If float between 0 and 1, it is the fraction of features to select.
opts.step?numberIf greater than or equal to 1, then step corresponds to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then step corresponds to the percentage (rounded down) of features to remove at each iteration.
opts.verbose?numberControls verbosity of output.

Returns RFE

Defined in generated/feature_selection/RFE.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/feature_selection/RFE.ts:23
_isInitializedbooleanfalsegenerated/feature_selection/RFE.ts:22
_pyPythonBridgeundefinedgenerated/feature_selection/RFE.ts:21
idstringundefinedgenerated/feature_selection/RFE.ts:18
optsanyundefinedgenerated/feature_selection/RFE.ts:19

Accessors

estimator_

Get Signature

get estimator_(): Promise<any>

The fitted estimator used to select features.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:580


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/feature_selection/RFE.ts:648


n_features_

Get Signature

get n_features_(): Promise<number>

The number of selected features.

Returns Promise<number>

Defined in generated/feature_selection/RFE.ts:602


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.

Returns Promise<number>

Defined in generated/feature_selection/RFE.ts:625


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/feature_selection/RFE.ts:65


ranking_

Get Signature

get ranking_(): Promise<ArrayLike>

The feature ranking, such that ranking_\[i\] corresponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are assigned rank 1.

Returns Promise<ArrayLike>

Defined in generated/feature_selection/RFE.ts:671


support_

Get Signature

get support_(): Promise<ArrayLike>

The mask of selected features.

Returns Promise<ArrayLike>

Defined in generated/feature_selection/RFE.ts:693

Methods

decision_function()

decision_function(opts): Promise<any>

Compute the decision function of X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?any[]The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to a sparse csr_matrix.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:133


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/feature_selection/RFE.ts:116


fit()

fit(opts): Promise<any>

Fit the RFE model and then the underlying estimator on the selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional parameters passed to the fit method of the underlying estimator.
opts.X?ArrayLikeThe training input samples.
opts.y?ArrayLikeThe target values.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:165


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/feature_selection/RFE.ts:208


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Mask feature names according to selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyInput features.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:250


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Raise NotImplementedError.

This estimator does not support metadata routing yet.

Parameters

ParameterType
optsobject

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:284


get_support()

get_support(opts): Promise<any>

Get a mask, or integer index, of the features selected.

Parameters

ParameterTypeDescription
optsobject-
opts.indices?booleanIf true, the return value will be an array of integers, rather than a boolean mask.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:310


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/feature_selection/RFE.ts:78


inverse_transform()

inverse_transform(opts): Promise<any>

Reverse the transformation operation.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:344


predict()

predict(opts): Promise<any>

Reduce X to the selected features and predict using the estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:376


predict_log_proba()

predict_log_proba(opts): Promise<any[]>

Predict class log-probabilities for X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any[]>

Defined in generated/feature_selection/RFE.ts:408


predict_proba()

predict_proba(opts): Promise<any[]>

Predict class probabilities for X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?any[]The input samples. Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to a sparse csr_matrix.

Returns Promise<any[]>

Defined in generated/feature_selection/RFE.ts:440


score()

score(opts): Promise<number>

Reduce X to the selected features and return the score of the estimator.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyParameters to pass to the score method of the underlying estimator.
opts.X?anyThe input samples.
opts.y?anyThe target values.

Returns Promise<number>

Defined in generated/feature_selection/RFE.ts:472


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:516


transform()

transform(opts): Promise<any>

Reduce X to the selected features.

Parameters

ParameterTypeDescription
optsobject-
opts.X?anyThe input samples.

Returns Promise<any>

Defined in generated/feature_selection/RFE.ts:548