Documentation
Classes
PatchExtractor

PatchExtractor

Extracts patches from a collection of images.

Read more in the User Guide.

Python Reference (opens in a new tab)

Constructors

constructor()

Signature

new PatchExtractor(opts?: object): PatchExtractor;

Parameters

NameTypeDescription
opts?object-
opts.max_patches?numberThe maximum number of patches per image to extract. If max\_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. If set to undefined, extract all possible patches.
opts.patch_size?anyThe dimensions of one patch. If set to undefined, the patch size will be automatically set to (img\_height // 10, img\_width // 10), where img\_height and img\_width are the dimensions of the input images.
opts.random_state?numberDetermines the random number generator used for random sampling when max\_patches is not None. Use an int to make the randomness deterministic. See Glossary.

Returns

PatchExtractor

Defined in: generated/feature_extraction/image/PatchExtractor.ts:23 (opens in a new tab)

Methods

dispose()

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Signature

dispose(): Promise<void>;

Returns

Promise<void>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:98 (opens in a new tab)

fit()

Only validate the parameters of the estimator.

This method allows to: (i) validate the parameters of the estimator and (ii) be consistent with the scikit-learn transformer API.

Signature

fit(opts: object): Promise<any>;

Parameters

NameTypeDescription
optsobject-
opts.X?ArrayLike[][]Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have n\_channels=3.
opts.y?anyNot used, present for API consistency by convention.

Returns

Promise<any>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:117 (opens in a new tab)

fit_transform()

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit\_params and returns a transformed version of X.

Signature

fit_transform(opts: object): Promise<any[]>;

Parameters

NameTypeDescription
optsobject-
opts.X?ArrayLike[]Input samples.
opts.fit_params?anyAdditional fit parameters.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns

Promise<any[]>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:157 (opens in a new tab)

get_metadata_routing()

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Signature

get_metadata_routing(opts: object): Promise<any>;

Parameters

NameTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns

Promise<any>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:206 (opens in a new tab)

init()

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Signature

init(py: PythonBridge): Promise<void>;

Parameters

NameType
pyPythonBridge

Returns

Promise<void>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:56 (opens in a new tab)

set_output()

Set output container.

See Introducing the set_output API for an example on how to use the API.

Signature

set_output(opts: object): Promise<any>;

Parameters

NameTypeDescription
optsobject-
opts.transform?"default" | "pandas"Configure output of transform and fit\_transform.

Returns

Promise<any>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:243 (opens in a new tab)

transform()

Transform the image samples in X into a matrix of patch data.

Signature

transform(opts: object): Promise<any[]>;

Parameters

NameTypeDescription
optsobject-
opts.X?ArrayLike[][]Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have n\_channels=3.

Returns

Promise<any[]>

Defined in: generated/feature_extraction/image/PatchExtractor.ts:276 (opens in a new tab)

Properties

_isDisposed

boolean = false

Defined in: generated/feature_extraction/image/PatchExtractor.ts:21 (opens in a new tab)

_isInitialized

boolean = false

Defined in: generated/feature_extraction/image/PatchExtractor.ts:20 (opens in a new tab)

_py

PythonBridge

Defined in: generated/feature_extraction/image/PatchExtractor.ts:19 (opens in a new tab)

id

string

Defined in: generated/feature_extraction/image/PatchExtractor.ts:16 (opens in a new tab)

opts

any

Defined in: generated/feature_extraction/image/PatchExtractor.ts:17 (opens in a new tab)

Accessors

py

Signature

py(): PythonBridge;

Returns

PythonBridge

Defined in: generated/feature_extraction/image/PatchExtractor.ts:43 (opens in a new tab)

Signature

py(pythonBridge: PythonBridge): void;

Parameters

NameType
pythonBridgePythonBridge

Returns

void

Defined in: generated/feature_extraction/image/PatchExtractor.ts:47 (opens in a new tab)