Class: MinMaxScaler

Transform features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.

The transformation is given by:

Python Reference

Constructors

new MinMaxScaler()

new MinMaxScaler(opts?): MinMaxScaler

Parameters

ParameterTypeDescription
opts?object-
opts.clip?booleanSet to true to clip transformed values of held-out data to provided feature range.
opts.copy?booleanSet to false to perform inplace row normalization and avoid a copy (if the input is already a numpy array).
opts.feature_range?anyDesired range of transformed data.

Returns MinMaxScaler

Defined in generated/preprocessing/MinMaxScaler.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/preprocessing/MinMaxScaler.ts:23
_isInitializedbooleanfalsegenerated/preprocessing/MinMaxScaler.ts:22
_pyPythonBridgeundefinedgenerated/preprocessing/MinMaxScaler.ts:21
idstringundefinedgenerated/preprocessing/MinMaxScaler.ts:18
optsanyundefinedgenerated/preprocessing/MinMaxScaler.ts:19

Accessors

data_max_

Get Signature

get data_max_(): Promise<ArrayLike>

Per feature maximum seen in the data

Returns Promise<ArrayLike>

Defined in generated/preprocessing/MinMaxScaler.ts:479


data_min_

Get Signature

get data_min_(): Promise<ArrayLike>

Per feature minimum seen in the data

Returns Promise<ArrayLike>

Defined in generated/preprocessing/MinMaxScaler.ts:454


data_range_

Get Signature

get data_range_(): Promise<ArrayLike>

Per feature range (data_max_ \- data_min_) seen in the data

Returns Promise<ArrayLike>

Defined in generated/preprocessing/MinMaxScaler.ts:504


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/preprocessing/MinMaxScaler.ts:579


min_

Get Signature

get min_(): Promise<ArrayLike>

Per feature adjustment for minimum. Equivalent to min \- X.min(axis=0) \* self.scale_

Returns Promise<ArrayLike>

Defined in generated/preprocessing/MinMaxScaler.ts:408


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/preprocessing/MinMaxScaler.ts:529


n_samples_seen_

Get Signature

get n_samples_seen_(): Promise<number>

The number of samples processed by the estimator. It will be reset on new calls to fit, but increments across partial_fit calls.

Returns Promise<number>

Defined in generated/preprocessing/MinMaxScaler.ts:554


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/preprocessing/MinMaxScaler.ts:49


scale_

Get Signature

get scale_(): Promise<ArrayLike>

Per feature relative scaling of the data. Equivalent to (max \- min) / (X.max(axis=0) \- X.min(axis=0))

Returns Promise<ArrayLike>

Defined in generated/preprocessing/MinMaxScaler.ts:431

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/preprocessing/MinMaxScaler.ts:101


fit()

fit(opts): Promise<any>

Compute the minimum and maximum to be used for later scaling.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data used to compute the per-feature minimum and maximum used for later scaling along the features axis.
opts.y?anyIgnored.

Returns Promise<any>

Defined in generated/preprocessing/MinMaxScaler.ts:118


fit_transform()

fit_transform(opts): Promise<any[]>

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

ParameterTypeDescription
optsobject-
opts.fit_params?anyAdditional fit parameters.
opts.X?ArrayLike[]Input samples.
opts.y?ArrayLikeTarget values (undefined for unsupervised transformations).

Returns Promise<any[]>

Defined in generated/preprocessing/MinMaxScaler.ts:157


get_feature_names_out()

get_feature_names_out(opts): Promise<any>

Get output feature names for transformation.

Parameters

ParameterTypeDescription
optsobject-
opts.input_features?anyInput features.

Returns Promise<any>

Defined in generated/preprocessing/MinMaxScaler.ts:199


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/preprocessing/MinMaxScaler.ts:235


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/preprocessing/MinMaxScaler.ts:62


inverse_transform()

inverse_transform(opts): Promise<ArrayLike[]>

Undo the scaling of X according to feature_range.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Input data that will be transformed. It cannot be sparse.

Returns Promise<ArrayLike[]>

Defined in generated/preprocessing/MinMaxScaler.ts:269


partial_fit()

partial_fit(opts): Promise<any>

Online computation of min and max on X for later scaling.

All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very large number of n_samples or because X is read from a continuous stream.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data used to compute the mean and standard deviation used for later scaling along the features axis.
opts.y?anyIgnored.

Returns Promise<any>

Defined in generated/preprocessing/MinMaxScaler.ts:305


set_output()

set_output(opts): Promise<any>

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters

ParameterTypeDescription
optsobject-
opts.transform?"default" | "pandas" | "polars"Configure output of transform and fit_transform.

Returns Promise<any>

Defined in generated/preprocessing/MinMaxScaler.ts:344


transform()

transform(opts): Promise<ArrayLike[]>

Scale features of X according to feature_range.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]Input data that will be transformed.

Returns Promise<ArrayLike[]>

Defined in generated/preprocessing/MinMaxScaler.ts:376