DocumentationClassesRidgeClassifier

Class: RidgeClassifier

Classifier using Ridge regression.

This classifier first converts the target values into {-1, 1} and then treats the problem as a regression task (multi-output regression in the multiclass case).

Read more in the User Guide.

Python Reference

Constructors

new RidgeClassifier()

new RidgeClassifier(opts?): RidgeClassifier

Parameters

ParameterTypeDescription
opts?object-
opts.alpha?numberRegularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such as LogisticRegression or LinearSVC.
opts.class_weight?anyWeights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes \* np.bincount(y)).
opts.copy_X?booleanIf true, X will be copied; else, it may be overwritten.
opts.fit_intercept?booleanWhether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
opts.max_iter?numberMaximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg.
opts.positive?booleanWhen set to true, forces the coefficients to be positive. Only ‘lbfgs’ solver is supported in this case.
opts.random_state?numberUsed when solver == ‘sag’ or ‘saga’ to shuffle the data. See Glossary for details.
opts.solver?"auto" | "svd" | "lsqr" | "lbfgs" | "sag" | "saga" | "cholesky" | "sparse_cg"Solver to use in the computational routines:
opts.tol?numberThe precision of the solution (coef_) is determined by tol which specifies a different convergence criterion for each solver:

Returns RidgeClassifier

Defined in generated/linear_model/RidgeClassifier.ts:25

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/linear_model/RidgeClassifier.ts:23
_isInitializedbooleanfalsegenerated/linear_model/RidgeClassifier.ts:22
_pyPythonBridgeundefinedgenerated/linear_model/RidgeClassifier.ts:21
idstringundefinedgenerated/linear_model/RidgeClassifier.ts:18
optsanyundefinedgenerated/linear_model/RidgeClassifier.ts:19

Accessors

coef_

Get Signature

get coef_(): Promise<ArrayLike[]>

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

Returns Promise<ArrayLike[]>

Defined in generated/linear_model/RidgeClassifier.ts:434


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifier.ts:532


intercept_

Get Signature

get intercept_(): Promise<number | ArrayLike>

Independent term in decision function. Set to 0.0 if fit_intercept \= False.

Returns Promise<number | ArrayLike>

Defined in generated/linear_model/RidgeClassifier.ts:457


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/linear_model/RidgeClassifier.ts:507


n_iter_

Get Signature

get n_iter_(): Promise<ArrayLike>

Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return undefined.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifier.ts:482


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/linear_model/RidgeClassifier.ts:97


solver_

Get Signature

get solver_(): Promise<string>

The solver that was used at fit time by the computational routines.

Returns Promise<string>

Defined in generated/linear_model/RidgeClassifier.ts:557

Methods

decision_function()

decision_function(opts): Promise<ArrayLike>

Predict confidence scores for samples.

The confidence score for a sample is proportional to the signed distance of that sample to the hyperplane.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeThe data matrix for which we want to get the confidence scores.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifier.ts:168


dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/linear_model/RidgeClassifier.ts:149


fit()

fit(opts): Promise<any>

Fit Ridge classifier model.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?number | ArrayLikeIndividual weights for each sample. If given a float, every sample will have the same weight.
opts.X?ArrayLikeTraining data.
opts.y?ArrayLikeTarget values.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifier.ts:202


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifier.ts:246


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/linear_model/RidgeClassifier.ts:110


predict()

predict(opts): Promise<ArrayLike>

Predict class labels for samples in X.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLike[]The data matrix for which we want to predict the targets.

Returns Promise<ArrayLike>

Defined in generated/linear_model/RidgeClassifier.ts:280


score()

score(opts): Promise<number>

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples.
opts.y?ArrayLikeTrue labels for X.

Returns Promise<number>

Defined in generated/linear_model/RidgeClassifier.ts:314


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifier.ts:360


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/linear_model/RidgeClassifier.ts:398