Class: MDS
Multidimensional scaling.
Read more in the User Guide.
Constructors
new MDS()
new MDS(
opts
?):MDS
Parameters
Parameter | Type | Description |
---|---|---|
opts ? | object | - |
opts.dissimilarity ? | "euclidean" | "precomputed" | Dissimilarity measure to use: |
opts.eps ? | number | Relative tolerance with respect to stress at which to declare convergence. The value of eps should be tuned separately depending on whether or not normalized_stress is being used. |
opts.max_iter ? | number | Maximum number of iterations of the SMACOF algorithm for a single run. |
opts.metric ? | boolean | If true , perform metric MDS; otherwise, perform nonmetric MDS. When false (i.e. non-metric MDS), dissimilarities with 0 are considered as missing values. |
opts.n_components ? | number | Number of dimensions in which to immerse the dissimilarities. |
opts.n_init ? | number | Number of times the SMACOF algorithm will be run with different initializations. The final results will be the best output of the runs, determined by the run with the smallest final stress. |
opts.n_jobs ? | number | The number of jobs to use for the computation. If multiple initializations are used (n_init ), each run of the algorithm is computed in parallel. undefined means 1 unless in a joblib.parallel_backend context. \-1 means using all processors. See Glossary for more details. |
opts.normalized_stress ? | boolean | "auto” default=”auto" | Whether use and return normed stress value (Stress-1) instead of raw stress calculated by default. Only supported in non-metric MDS. |
opts.random_state ? | number | Determines the random number generator used to initialize the centers. Pass an int for reproducible results across multiple function calls. See Glossary. |
opts.verbose ? | number | Level of verbosity. |
Returns MDS
Defined in generated/manifold/MDS.ts:23
Properties
Property | Type | Default value | Defined in |
---|---|---|---|
_isDisposed | boolean | false | generated/manifold/MDS.ts:21 |
_isInitialized | boolean | false | generated/manifold/MDS.ts:20 |
_py | PythonBridge | undefined | generated/manifold/MDS.ts:19 |
id | string | undefined | generated/manifold/MDS.ts:16 |
opts | any | undefined | generated/manifold/MDS.ts:17 |
Accessors
dissimilarity_matrix_
Get Signature
get dissimilarity_matrix_():
Promise
<ArrayLike
[]>
Pairwise dissimilarities between the points. Symmetric matrix that:
Returns Promise
<ArrayLike
[]>
Defined in generated/manifold/MDS.ts:359
embedding_
Get Signature
get embedding_():
Promise
<ArrayLike
[]>
Stores the position of the dataset in the embedding space.
Returns Promise
<ArrayLike
[]>
Defined in generated/manifold/MDS.ts:315
feature_names_in_
Get Signature
get feature_names_in_():
Promise
<ArrayLike
>
Names of features seen during fit. Defined only when X
has feature names that are all strings.
Returns Promise
<ArrayLike
>
Defined in generated/manifold/MDS.ts:407
n_features_in_
Get Signature
get n_features_in_():
Promise
<number
>
Number of features seen during fit.
Returns Promise
<number
>
Defined in generated/manifold/MDS.ts:384
n_iter_
Get Signature
get n_iter_():
Promise
<number
>
The number of iterations corresponding to the best stress.
Returns Promise
<number
>
Defined in generated/manifold/MDS.ts:430
py
Get Signature
get py():
PythonBridge
Returns PythonBridge
Set Signature
set py(
pythonBridge
):void
Parameters
Parameter | Type |
---|---|
pythonBridge | PythonBridge |
Returns void
Defined in generated/manifold/MDS.ts:94
stress_
Get Signature
get stress_():
Promise
<number
>
The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points). If normalized_stress=True
, and metric=False
returns Stress-1. A value of 0 indicates “perfect” fit, 0.025 excellent, 0.05 good, 0.1 fair, and 0.2 poor [1].
Returns Promise
<number
>
Defined in generated/manifold/MDS.ts:337
Methods
dispose()
dispose():
Promise
<void
>
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Returns Promise
<void
>
Defined in generated/manifold/MDS.ts:145
fit()
fit(
opts
):Promise
<any
>
Compute the position of the points in the embedding space.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.init ? | ArrayLike [] | Starting configuration of the embedding to initialize the SMACOF algorithm. By default, the algorithm is initialized with a randomly chosen array. |
opts.X ? | ArrayLike [] | Input data. If dissimilarity=='precomputed' , the input should be the dissimilarity matrix. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<any
>
Defined in generated/manifold/MDS.ts:162
fit_transform()
fit_transform(
opts
):Promise
<ArrayLike
[]>
Fit the data from X
, and returns the embedded coordinates.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.init ? | ArrayLike [] | Starting configuration of the embedding to initialize the SMACOF algorithm. By default, the algorithm is initialized with a randomly chosen array. |
opts.X ? | ArrayLike [] | Input data. If dissimilarity=='precomputed' , the input should be the dissimilarity matrix. |
opts.y ? | any | Not used, present for API consistency by convention. |
Returns Promise
<ArrayLike
[]>
Defined in generated/manifold/MDS.ts:203
get_metadata_routing()
get_metadata_routing(
opts
):Promise
<any
>
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.routing ? | any | A MetadataRequest encapsulating routing information. |
Returns Promise
<any
>
Defined in generated/manifold/MDS.ts:247
init()
init(
py
):Promise
<void
>
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Parameters
Parameter | Type |
---|---|
py | PythonBridge |
Returns Promise
<void
>
Defined in generated/manifold/MDS.ts:107
set_fit_request()
set_fit_request(
opts
):Promise
<any
>
Request metadata passed to the fit
method.
Note that this method is only relevant if enable_metadata_routing=True
(see sklearn.set_config
). Please see User Guide on how the routing mechanism works.
The options for each parameter are:
Parameters
Parameter | Type | Description |
---|---|---|
opts | object | - |
opts.init ? | string | boolean | Metadata routing for init parameter in fit . |
Returns Promise
<any
>
Defined in generated/manifold/MDS.ts:283