Class: SVR

Epsilon-Support Vector Regression.

The free parameters in the model are C and epsilon.

The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to datasets with more than a couple of 10000 samples. For large datasets consider using LinearSVR or SGDRegressor instead, possibly after a Nystroem transformer or other Kernel Approximation.

Read more in the User Guide.

Python Reference

Constructors

new SVR()

new SVR(opts?): SVR

Parameters

ParameterTypeDescription
opts?object-
opts.C?numberRegularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared l2. For an intuitive visualization of the effects of scaling the regularization parameter C, see Scaling the regularization parameter for SVCs.
opts.cache_size?numberSpecify the size of the kernel cache (in MB).
opts.coef0?numberIndependent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.
opts.degree?numberDegree of the polynomial kernel function (‘poly’). Must be non-negative. Ignored by all other kernels.
opts.epsilon?numberEpsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. Must be non-negative.
opts.gamma?number | "auto" | "scale"Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’.
opts.kernel?"sigmoid" | "precomputed" | "linear" | "poly" | "rbf"Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix.
opts.max_iter?numberHard limit on iterations within solver, or -1 for no limit.
opts.shrinking?booleanWhether to use the shrinking heuristic. See the User Guide.
opts.tol?numberTolerance for stopping criterion.
opts.verbose?booleanEnable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.

Returns SVR

Defined in generated/svm/SVR.ts:27

Properties

PropertyTypeDefault valueDefined in
_isDisposedbooleanfalsegenerated/svm/SVR.ts:25
_isInitializedbooleanfalsegenerated/svm/SVR.ts:24
_pyPythonBridgeundefinedgenerated/svm/SVR.ts:23
idstringundefinedgenerated/svm/SVR.ts:20
optsanyundefinedgenerated/svm/SVR.ts:21

Accessors

dual_coef_

Get Signature

get dual_coef_(): Promise<ArrayLike[]>

Coefficients of the support vector in the decision function.

Returns Promise<ArrayLike[]>

Defined in generated/svm/SVR.ts:402


feature_names_in_

Get Signature

get feature_names_in_(): Promise<ArrayLike>

Names of features seen during fit. Defined only when X has feature names that are all strings.

Returns Promise<ArrayLike>

Defined in generated/svm/SVR.ts:492


fit_status_

Get Signature

get fit_status_(): Promise<number>

0 if correctly fitted, 1 otherwise (will raise warning)

Returns Promise<number>

Defined in generated/svm/SVR.ts:424


intercept_

Get Signature

get intercept_(): Promise<ArrayLike>

Constants in decision function.

Returns Promise<ArrayLike>

Defined in generated/svm/SVR.ts:447


n_features_in_

Get Signature

get n_features_in_(): Promise<number>

Number of features seen during fit.

Returns Promise<number>

Defined in generated/svm/SVR.ts:469


n_iter_

Get Signature

get n_iter_(): Promise<number>

Number of iterations run by the optimization routine to fit the model.

Returns Promise<number>

Defined in generated/svm/SVR.ts:515


py

Get Signature

get py(): PythonBridge

Returns PythonBridge

Set Signature

set py(pythonBridge): void

Parameters

ParameterType
pythonBridgePythonBridge

Returns void

Defined in generated/svm/SVR.ts:109


shape_fit_

Get Signature

get shape_fit_(): Promise<any[]>

Array dimensions of training vector X.

Returns Promise<any[]>

Defined in generated/svm/SVR.ts:537


support_

Get Signature

get support_(): Promise<ArrayLike>

Indices of support vectors.

Returns Promise<ArrayLike>

Defined in generated/svm/SVR.ts:559


support_vectors_

Get Signature

get support_vectors_(): Promise<ArrayLike[]>

Support vectors.

Returns Promise<ArrayLike[]>

Defined in generated/svm/SVR.ts:581

Methods

dispose()

dispose(): Promise<void>

Disposes of the underlying Python resources.

Once dispose() is called, the instance is no longer usable.

Returns Promise<void>

Defined in generated/svm/SVR.ts:160


fit()

fit(opts): Promise<any>

Fit the SVM model according to the given training data.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikePer-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points.
opts.X?ArrayLikeTraining vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples).
opts.y?ArrayLikeTarget values (class labels in classification, real numbers in regression).

Returns Promise<any>

Defined in generated/svm/SVR.ts:177


get_metadata_routing()

get_metadata_routing(opts): Promise<any>

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Parameters

ParameterTypeDescription
optsobject-
opts.routing?anyA MetadataRequest encapsulating routing information.

Returns Promise<any>

Defined in generated/svm/SVR.ts:220


init()

init(py): Promise<void>

Initializes the underlying Python resources.

This instance is not usable until the Promise returned by init() resolves.

Parameters

ParameterType
pyPythonBridge

Returns Promise<void>

Defined in generated/svm/SVR.ts:122


predict()

predict(opts): Promise<ArrayLike>

Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

Parameters

ParameterTypeDescription
optsobject-
opts.X?ArrayLikeFor kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train).

Returns Promise<ArrayLike>

Defined in generated/svm/SVR.ts:254


score()

score(opts): Promise<number>

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true \- y_pred)\*\* 2).sum() and \(v\) is the total sum of squares ((y_true \- y_true.mean()) \*\* 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?ArrayLikeSample weights.
opts.X?ArrayLike[]Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.
opts.y?ArrayLikeTrue values for X.

Returns Promise<number>

Defined in generated/svm/SVR.ts:288


set_fit_request()

set_fit_request(opts): Promise<any>

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in fit.

Returns Promise<any>

Defined in generated/svm/SVR.ts:334


set_score_request()

set_score_request(opts): Promise<any>

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

Parameters

ParameterTypeDescription
optsobject-
opts.sample_weight?string | booleanMetadata routing for sample_weight parameter in score.

Returns Promise<any>

Defined in generated/svm/SVR.ts:370